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Abstract

~’he precession and nutations  of the Earth’s equator arise from solar, lunar, and planetary
torques on the oblate  Earth. The mean lunar orbit plane is nearly coincident with the
ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the
Earth’s gravitational harmonic J2. These planetary perturbations on the lunar orbit result
in torques on the ,oblate  Earth which contribute to precession, obliquity rate, and nutations
while the J2 perturbations contribute to precession and nutations.  Small additional
contributions to the secular rates arise from tidal effects and planetary torques on the
Earth’s bulge. The total correction to the obliquity rate is -0,024 “/century, it is an
observable motion in space (the much larger conventional obliquity rate is wholly  from
the motion of the ecliptic, not the equator), and it is not accounted for in the IAU-adopted
expressions for the orientation of the Earth’s equator. The J2 effects have generally been
allowed for in past precession and nutation  theories. For the planetary effect, the
contributions to the 18.6-yr nutations  are –0.03 mas (mi]liarcseconds)  for the in-phase A~
plus out-of-phase contributions of 0.14 mas in AyI and -0.03  mas in A&. The latter terms
demonstrate that out-of-phase contributions can arise by means other than dissipation.
The sun] of the contributions to the precession ra(e are considered and the inferred value
of the moment of inertia combination (C--A)K, which is used to scale the coefficients in
the nutation  series, is evaluated. lJsing  an updated value for the precession rate, the rigid-
body (C–A)/C  = 0.0032737634 which, in combination with a satellite-derived J2, gives a
normalize polar moment of inertia C/MR2 = 0.3307007. The planetary contributions to
the precession and obliquity rates are not constant for long times causing accelerations in
both quantities. Acceleration in precession also arises from tides. Contributions from the
improved theory, masses, ecliptic motion, and measured values of the precession rate and
obliquity are combined to give expressions (polynomials in time) for precession ,
obliquity, and Greenwich Mean Sidereal Time.

1. Introduction

Torques on the oblate  Earth due to the gravitational attraction of the Sun and Moon cause
the Earth’s equator to precess  and nutate, The precession is retrograde and its rate is 50
“/yr, roughly 1/3 of it due to the Sun and 2/3 from the Moon, The rate depends on the
lunar and solar masses and distances, the orbital eccentricities and inclinations, and the
obliquity angle between the Earth’s equator and ecliptic planes,

Recent decades have seen impressive advances in the accuracies of techniques measuring
positions of artificial satellites, the Moon, and radio sources. Accurate, theories for the
motion of the Earth’s equator in space are needed. This paper examines several
theoretical contributions to precession, obliquity change, and nutation.

The orbit of the Earth-Moon system about the Sun defines the ecliptic plane. The lunar
orbit is inclined 5° to the ecliptic plane and the strong solar torques drive the precession
of the lunar orbit plane along the ecliptic with an 18.6-yr  period. But several influences
cause a slight tilt of the mean plane of orbital precession with respect to the ecliptic. The
Earth’s oblateness  contributes a small torque which attempts to precess the lunar orbit
along the equator, The net result of these two torques is a lunar orbit precession along a
plane tilted 8“ with respect to the ecliptic and this plane intersects the ecliptic at the
dynamical equinox, the intersection of the ecliptic and equator planes. This small
influence of the Earth’s oblateness  on the lunar orbit in turn causes a small change in the
precession of the Earth’s equator.



The orbit planes of the planets have small inclinations with respect to the ecliptic plane.
As a consequence of the planetary attractions, the ecliptic plane moves. The Moon’s
mean plane of orbital precession follows the moving ecliptic closely, but not perfectly,
“l’his motion causes a 1,4” tilt of the plane of orbital precession to the ecliptic. l’here arc.
also direct planetary torques on the lunar orbit which contribute a smaller displacement.
These two influences on the lunar orbit cause torclucs  on the oblate  Earth which moclify
its orientation, as does the direct attraction of the planets. The torques from these three
planetary influences are not aligned with respect to the dynamical equinox.
Consequcnt]y,  they contribute to both the precession of the equator and the obliquity  rate,
While the precession rate must be a measured quantity, the obliquity rate is not a free
parameter of the dynamics. These planetary influences are not included in the IALJ-
adopted theory of precession and obliquity change (I .ieske et al. 1977). Neither have all
of the consequences of the planettiry  tilts on the lunar orbit been included in recent
nutation  theories.

‘Ile above outlined corrections to the motion of the Earth’s equator are developed in the
following sections. To these corrections are added  precession corrections developed by
Kinoshita  & Souchay  (1990) from the Earth’s J4 and second-order corrections due to
nuta[ions.  From the revised theory are developed new expressions for the motion of the
Earth’s equator and revised values of the Earth’s fractional moment of iner[ia, (C-A) /C,
and the normalized polar moment, CYMR2.

2. Fundamentals

This section will set up the fundamental equations for calculating the motion of the
Earth’s equator (or pole) in space. As the computations of the subsequent two sections
are limited to small effects, it is reasonable to introduce simplifications. The Earth will
be treated as a rigid body without oceans and without the influence of a liquid core.
Small differences in the directions of the axes of angular momentum, instantaneous spin,
and figure (equivalent to celestial ephemeris pole for a rigid body) are ignored. The
equations will be written for the angular momentum axis, but strictly speaking it is the
motion of the figure axis of the rigid Earth which is desired, Also ignored are second-
order effects due to the change of the Earth’s orientation, e. g., precession and nutation
modifying the computation of precession and nutation.

The oblate,  rigid Earth is torqued  by an external body. The attracting body has a
geocentric distance r and a product of the gravitational constant and mass Gm. The Earth
has moments of inertia A, A, C with A<C and mass M. The z, axis is aligned with the
Barth’s principal axis corresponding to the maximum moment C, and the x axis points
toward the intersection of the ecliptic and equator planes, the dynamical equinox. The
potential energy of the external body in the gravity field of the oblate  Earth is

V= Gm[M/r-(C-A) (3sin26-1)/2r~  ] (1)

where the declination of the attracting body is 6 and the right ascension is cx
I;quivalently,  the vector I has components ( x, y, z ), The torque ~ on the Earth is

(2)

3 G m (C-A) sin 6 cos 6 ( sinct  I
~ = . - . — . . I -cm a Ir3 [OJ



[)3 G m (C-A) y z
~= —._. ____—. — ._. -xx (3)
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The rate of change of the vector angular momentum ~ is governed by d~ / dt = 1.
Given the orbit of the external attracting body, the resulting precession and nuta[ion of
the Earth can be calculated.

The analytical theories for the Sun, planets, and Moon are referred to the ecliptic plane.
Consequently, the conversion from geocentric ecliptic coordinates (X, Y, Z) to equatorial
coordinates (x, y, z) requires a rotation about the x axis by the obliquitys.

(4)

In the torque vector the products of equatorial coordinate components become

(g,), ~z , _ ( (Y2-Z2) sin 2c/ 2 + ‘#Z ccis 2E
-X Zcose-XY3ine )

(o)-~
(5)
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The ecliptic coordinates (X, Y, Z) of the attracting body can be written in terms of the
geocentric distance r and the geocentric ecliptic longitude Aand latitude D.

Because the Earth’s path about the Sun is well approximated by an elliptical orbit in the
ecliptic plane, the solar torque may be computed with good accuracy with little effort.
Averaged over an integral number of revolutions the average x-component of torque is

TX = 3Gm(C-A) sinccos  8/2a3(l-e2  )3/2

where a is the semimajor axis, e the orbital eccentricity, and & is the obliquity. The x-
component of torque gives rise to a retrograde precession along the ecliptic with rate
dt@dt  = Tx/ CW, sin & where Oz is the major component of the Earth’s angular velocity
and CmL approximates the total angular momentum of the Earth’s spin.

d@dt  = 3 G m (C-A) cos & / 2 a~ ( 1- e2 )3/2 @ (7)

G/a~ maybe replaced with n2 divided by the sum of the masses (Sun+Earth+Moon)
using Kepler’s third law. The analogous precession from the Moon includes an
inclination factor of 1 – 1.5 sin2 i. The other two torque components have zero average,



but of course the first two components have time variations which contribute periodic
nutation  terms.

~’he elliptical approximation above works well for the solar-induced precession of the
}{ar(h’s  equator along the ecliptic, but it is a coarser approximation for the lunar effect
because the lunar orbit is strongly pmlurbed  by the Sun. These difficulties in the major
precession and nutation  effects have been dealt with by Kinoshita  & Souchay  ( 1990),
Their computation for the solar precession is only larger by 2x 10–6 so Iiq. (7) is a very
good approximation for (he Sun, ~’he lunar orbit is highly perturbed and the equivalent
equation for the lunar-induced precession, including the inclination factor, is less precise.
The computation of many small corrections in this paper can use the elliptical
approximation

3, Effects Due to the ‘1’ilted 1.unar Mean Plane

The lunar orbit precesses along a plane which is tilted slightly with respect to the ecliptic,
The Ear~h’s J2 causes an 8“ tilt and planetary effects cause a 1.5” tilt. As a consequence
of these small sizes, expansions will bc used. The lunar latitude arises from the 5.15°
inclination of the orbit to the ecliptic i, and smaller perturbations Afl so that

sin ~ = sin i sin F -t A~ (8)

where F is the mean argument of latitude, Similarly the lunar longitude k may be written
in terms of its mean longitude 1.., mean anomaly !, eccentricity e, and smaller
contributions AL

h =  L+2esin4+AL (9)

The perturbing terms most important for precession and nutations  are selected from
Chapront-Touze & Chapront  (1988, 1991). F;or .12 perturbations

A13 = -8.045” sin L + 0.326” sin(L-2F)

AL = 7.063” sin Q + 0.361” sin(l .-FF) (lo)

where Q is the lunar node (Q=L-F).

A~ = 1.510” sin(L+96.68’)

AL = -0.289” sin(Q+95,  13°

The important planetary-induced tertns are

-0.062” sin(L+F+95,  13°) (11)

The J2 and planetary effects also cause radial perturbations, but compared with the
longitude and latitude perturbations they are relatively ineffective in modifying
precession and nutations.

For the purposes of expansions, the above perturbations in ecliptic longitude and latitude
will be represented symbolically as

A~ = B sin(L+@)  + B’ sin(L-2F)

AL = E sin(fl+(p)  + E’ sin(L+F+~) (12)



.

The ecliptic plane is rotating about a line which is displaced from the dynamical equinox
by w90”.  The phase $ is different from q because the first term in latitude combines
both the direct effect of the planets with the indilect  effect of the ecliptic motion. After
introducing these perturbations into the clifferential  equations of the previous section and
carrying out the expansions through first clcgree  in e and sin i there arc contributions to
both rate and periodic terms in ~ and c. The rate terms are

3Gm (C–A) cos 2C
d~ldt = -—-- - - - –  [Bcos$+ (13’ -E)sinicos Q/2]

2a3Col~sinc

-3Gm (C-A) COS C
dddt = [Bsin$+-  (E’- E)sinisinq/2] (13)

2a~C0z

A contribution to the obliquity rate requires phase shifts. The planetary effects contribute
a --0,254 mas/yr (mas=milliarcsecond) correction to the obliquity rate while J2
perturbations contribute nothing. To the precession, J2 perturbations contribute -2.630
mas/yr while planetary effects contribute -0.056 mas/yr for a total of -2,686 mas/yr.

The largest of the nutation  corrections has the 18,6-yr  period of the lunar node. While the
rigid-body nutation  theory caused by the main lunar theory only contains in-phase terms
(sines of the arguments for A~and  cosines for A~), the phase shifts from the planetary
effects also induce out-of-phase terms (cosines for A~ and sines for Ac).

3Gm (C–A) sin E cos 8
sin & A~ = —–-—-————–..--.—— { [--(7/2) sin i B cos @ + E’ cos q + 3 sin i B’] sin f2

2 a~ C ml, dQ/dt

+ [(5/2 )sini Bsin@-E’sin~]cos  Q }

3Gm (C–A) sin E
Ac=– —---- ( [ sin i B cos $ / 2-- F,’ cos (p ] cos Q

2 as C ~ dQ/dt

+[sini  Bsin@/2– E’sin~]sin  Q } (14)

Nutation  terms at half of the nodal period must also be considered, The contributions to
the nutation  terms with argument twice the lunar node are

3 G m (C–A) cos 2~.
sin & AV = –—---- [ ( sin i E cos (p / 2- B’) sin 2Q

4 a3 C (o~ dQ/dt
+-(sini  Hsin(p/2)cos2Q]

3Gm (C–A) cos E,
AC = –.———--..––––––– [ - ( sin i E cos ~ / 2- B’) cos 2Q

4 a3 C WA dQ/dt
+(sini Esin(p /2)sin2Q] (15)



Finally, there are small corrections to terms with argument 21..

~ G m (C-A) COS 2F.
sin & AV = -—.. .—— .— _ .—.. _— _ _—. [- B C05$ sin 21. - B sin$ cos21J  ]

4 as C 01 clL/cit

3Gm (C–A) COS c
AE, = ------ ------------------ [ B cos $ cos 21, - B sin $ sin 21. ] (16)

4 a3 C wl, clI./dt

lJsing the numerical values  of the coefficients and phases for the J2 and planetary effects,
the above contributions to the nutations  have been calculated. They are presented in
~’able  1 (units mas). The major contribution is to the 18.6-yr  Ay/ term with a lesser
contribution to the 18.6-yr Ac term, Roth of these contributions increase the magnitude
of the conventional 18.6-yr terms, The contributions to the 9.3-yr nutations  are small.
The two contributions in Fiq, (15) from the J2 effect nearly cancel and the values  in the
table are effectively zero. The higher frequency of the 21. (=2 F+2Q) term prevents those
half-month nutation  corrections from being large.

Out-of-phase terms in nutation  theory will arise from dissipative processes in the oceans
(Wahr & Sasao 1981, Zhu et al. 1990) and interior of the Earth (Wahr & Bergen 1986,
Dchant  1988, 1990). The out-of-phase terms in Table 1 arise from the phase shifts in the
planetary effects which in turn arise because the orbit planes of the planets other than
Earth have no special alignment with the ecliptic plane or dynamical equinox. There are
still smaller corrections at arguments of 21 .+ G!, 2L~f2, 2GJ+f2,  2GK2, and 3!2 which are
not given.

Woolard (1953) was aware that out-of-phase terms in nutation  theory could arise from
planetary perturbations on the lunar orbit, The out-of-phase 18.6-yr term for nutation  in
longitude  occurs in his Table 24 (it is marked with a ? and a footnote, but matches the
value in Table 1 of this paper), but the obliquity term was too small for his cutoff limit.
In the same table (nutations  with respect to space) Woolard  shows additional 18.6-yr out-
of-phase terms arising from the integration oft sin Q and t cos Q terms in the differential
equations, but they do not show up in Table 26 (nutations  with respect to moving ecliptic)
though one is big enough, Woolard  also calculated the obliquity rate contribution,
showing -0.256 mas/yr in his Table 24 at the year 1900. In the text (pg. 127) he also
comments that the planetary-induced lunar terms contribute to precession and to the
acceleration of obliquity. Kinoshita  (1975, 1977) considered the obliquity rate
contribution to be due to an error in Woolard’s equations of motion. This assertion will
be discussed further in section 6, Kinoshita’s M 1 correction to precession is --2.68 mas/yr
and it appears to correspond to the sum of the J2 and in-phase planetary effects computed
in this paper. In Kinoshita  & Souchay  (1990) a more elaborate “second-order” correction
to precession replaces the earlier M I correction. It contains a -2.60 mas/yr correction to
precession due to the J2 effects, but the -0.056  mas/yr  planetary effect is missing.
Presumably, their nutations  contain the corresponding contribution from J2, but not from
the planetary tilt,



4., Rates Due to Direct Torques of P]ancts on Iiarth

The torques from the Sun and Moon dominate the precession of the Earth’s equator.
“1’here arc small additional torques from the planets which contribute to the precession.
~’hc inclination of the planetary orbits to the ecliptic will also cause a small obliquity rate.
A calculation of the precession was given by Kinoshita  & Souchay (1990), but not the
ob]ic~uity  rate. A brief derivation of both rates is given below.

in order to compute the geocentric coordinates of the attracting planet, it is necessary to
difference the heliocentric coordinates of the planc( and the Earth. Primes will bc used
for the planet’s variables, no primes for the Earth, The effects are small so to keep the
derivation from becoming unwieldy two approximations will be introduced. The
heliocentric orbits will bc taken as circles and the planetary inclinations will only be
carried to first degree (COS i’ = 1). Then the planet’s geocentric ecliptic coordinates are

where a and a’ denote the semimajor axes, i’ the inclination to the ecliptic, Q’ the node on
the ecliptic, and u and u’ the arguments of latitude  measured from the same node for both
the Earth and attracting planet. The geocentric distance r is given by

r2 = az + a’z – ~ a a’ cos(U-U’) (18)

The ecliptic coordinates are rotated into equatorial coordinates following Eq. (4) and the
products of coordinates of Eq. (5) are formed for substitution into Eq. (3) for the torque.
There results expressions involving products of sines and cosines of u and u’. In order to
isolate the secular rates from the periodic terms Gauss’ method of averaging over u and u’
is used. Denoting the average with c-, an example is <(YZ / r5)> =
~~ (YZ / rs) du du’ / 47c2 with both integrals evaluated from O to 27c. To winnow out terms
which will disappear during the double integration a mathematical device is useful. The
transformations (sin u, sin u’)–}(–sin  u, -sin u’), (COS u, cos u’)--+ (-cos  u, -COS u’), and
both taken together leave unchanged the distance r which appears in the denominators of
the integrals. Any component of the numerators Y2-Z2,  YZ, X2, or XY which reverses
sign under any of the three transformations will average to zero. Also, ~ince  only u–u’
appears in the denominator, changing variables of integration to u-u’ and U+U’ makes it
clear that additional components average to zero. Finally one gets

<( Y2-Z2)/ r5>=<l/r3 >/2
<YZ/r5  >= (a’/2) sini’cos Q’ (a’ <1 /r5>-a<cos(u-u’)  /r5>)
< XZ / r5 > = -(a’ / 2) sin i’ sin Q’ ( a’ <1 / r5> - a <COS(U-U’) / r5> )
<XY/r5>=0 (19)

The three different averages on the right-hancl sides above are only functions of u--u’ and
they may be evaluated in terms of complete elliptic integrals of the first and second kind,
K(k) and E(k), respectively,

<1 /r~ >= 2E(k)/[rc(a+a’)~  (1--k2) ]
<1 / r5 > = 2 [ -K(k)+ 2 E(k) (2-k2)  / (1--k2) ] / [ %t (a+a’)5 (1–k2)  ]

<cos(u–u’)  / r5> = 2[ -K(k) (2-k2)  + 2 E(k) (1-k2+k4)  / (1--k2)] / [3n (a+a’)5 k2 (1-k2)]



The modulus k is the geometric rncan of the two semimajor  axes divided by the
arithmetic mean or

k2=4aa’/(a+a’)2 (21)

The rates induced by the direct planetary torques are

ch+ddt = [Gin’ (C-A)/ n (a+a’) (a--a’)2 C(O1] [3 cos c E(k) - G cos 2C sin i’ cos Q’ / sin F ]
dtidt  = [Gin’ (C--A)/ TC (a+a’) (a-a’)2 COL] [ - G cos & sin i’ sin Cl ]
G=(a2+7a’2 )E(k)/2(a2-a’2  )-( a-a’ )K(k)/2(a+a’) (22)

where m’ is the attracting planet’s mass. In the precession rate the term involving Ii(k)
allows for the larger contribution to precession as though the attracting body were in the
ecliptic plane. For both rates the combinations sin i’ sin fl’ and sin i’ cos f)’, which are
two of the coordinates of the planet’s orbit pole direction, allow for small contributions
due to the tilt of the planet’s orbit plane with respect to the ecliptic. .

The numerical results for the precession and obliquity rate contributions from the direct
planetary torques on the Earth are given in Table 2. The 0.3183 nlas/yr  precession rate
results from 0.3269 mas/yr due to the E(k) term and -0.0086 mas/yr from the planeta~
inclinations. The comparison of precession rate with Kinoshita  & Souchay’s  (1990)
computations for Venus through Saturn shows a 3% difference for Venus and 1 % for
Jupiter. In Table 2 the largest values of the modulus k occur for Venus and Mars, 0.987
and 0.978, respectively, The obliquity rate contribution of-0.014 mas/yr  combines with
the larger contribution of –0.254 mas/yr from planetary effects through the lunar orbit
(section 3) to give -0.268 mas/yr, Tidal torques contribute an additional 0.024 nlas/yr  to
obliquity rate; the derivation is interconnected with nonlinear contributions and will be
deferred (section 7) until after the summarizing of the rates, The total obliquity rate with
respect to space is –0.244 nlas/yr. This correction to the obliquity rate is not included in
the expressions accompanying the IAU-adopted precession theory.

5. ‘1’otal Precession and Obliquity Rates

This section summarizes the various contributions to precession and obliquity rates, gives
the total values, and discusses the implications. The precession and nutations  of the
Earth’s pole in space depend on the dynamical flattening (C–A)/C.  Since the precession
can be measured with a smaller relative error than the nutations,  the value of precession is
a primary IAU-adopted constant and recent nutation  series have been computed from the
derived value of (C-A)/C  (or proportional quantities for the Sun and Moon called ks and
kM).

Knowledge of the precession rate and obliquity has improved since the adoption of the
1976 IAU constants. The value of (C–A)/C appropriate to the JAU constants, but with
the theoretical modifications of this paper and updated ecliptic motion, is 0.00327397826,
The featured computations will use improved values  of the precession ,rate, obliquity,
masses, mean motions, and ecliptic motion. A –3 mas/yr  correction to the IAU-adopted
value of the precession constant has been indicated by several lines of evidence: lunar
laser ranging (Williams e? al. 1991, 1993), very long baseline interferometry (Herring et
al, 1991, Herring 1991, McCarthy & Luzum 1991, Steppe et al, 1993), the two combined
(Chariot er al, 1991), and systematic proper motions in star catalogs (Miyamoto  & Soma



1993). Several recent fits have given corrections near -3.2 to –3,3 mas/yr and a general
precession rate of 5028.77 “/cy has been chosen. The change from the IAIJ general
precession rate is –3.266 mas/yr and (he cha.ngc in the luni-so]ar  precession rate is -3.219
mas/yr  (the two do not match because the ecliptic motion is different from the IALJ
paper). For the obliquity at J2000,  the value of 84381.409” = 23°26’21.409” is based on
analyses of lunar and planetary observations. ‘1’his obliquity and the mass ratios
Iiar(h/Moon  = 81.30059 and Sun/( F;arth+Moon)  = 328900.560 are from the recent
ephemeris DE 245 (Newhall, Standish, & Williams 1993). See Standish (1982) for the
technique of extracting the obliquity from an ephemeris. The corresponding (C- A)/C is
0.00327376340, ks = 3475,19739 “/cy (cy=ccntury),  and kM = 7546,73700 “/cy (or
7567.30S75 “/cy with the l/F2~ factor).

The various contributors to precession and obliquity rates are. summarized in Table 3.
Taken from Kinoshita  & Souchay  (1990) are the first-order equations for the computation
of the lunar- and solar-induced precession (the values were computed from the
equations), the value of the second-order lunar plus solar effects (excluding the J2 orbit
effects), and the small value for the precession induced by the Earth’s J4 gravitational
harmonic, The contribution to precession and obliquity rate due to the lunar orbit tilt
comes from section 3 of this paper and the planetary contribution due to direct torques on
the Earth’s oblateness  comes from Table 2 in section 4. The relativistic precession,
variously called the geodesic, geodetic, and de Sitter-Folker precession, is computed from
the following equation based on that in Barker  & O’Connell (1970, 1975).

Pg=3(na/c)2  n/2(1-e2) (23)

c is the speed of light and n and a are the mean motion and semirnajor  axis of the orbit of
the Earth-Moon system about the Sun. ‘l’he convention of measuring the precession
constant in a left-handed sense (retrograde) results in a negative sign for the geodesic
precession in the table. The tidal influence on obliquity rate is taken from section 7. The
sum of all of the above contributions gives the precession and obliquity rate with respect
to space for the stated value of (C–A)/C.  Conventicmally  the precession along the fixed
ecliptic with respect to space is referred to as the “luni-so]ar precession” (which includes
contributions from the planets as well). Clearly, it would be inappropriate to refer to the
companion -0.244 mas/yr obliquity rate as luni-solar obliquity rate since most of it
ultimately comes from planetary influences.

To get the precession and obliquity rate for the moving equator with respect to the
moving ecliptic plane it is necessary to subtract off the motion of the ecliptic plane. This
is done in the last two lines of Table 3. The values for the ecliptic motion have been
improved upon since the IAU theory (Lieske et al. 1977).  improved ecliptic motion and
its influence on the precession expressions has been considered by Bretagnon  (1982),
Bretagnon  & Chapront  (1981), Laskar ( 1986), and Simon et al. ( 1993) and the improved
motion from Simon er al,, including the correction for mass changes, has been used in the
table, There is a problem with the nomenclature of the past. What have been called
“planetary precession” and obliquity rate (Woolard  uses “precession in obliquity”) come
from the motion of the ecliptic. We now have two planetary contributions to each of
precession and obliquity rate which are motions in space, not ecliptic motion. It is
conventional to refer to the (mean-of-date) motion of the dynamical equinox along the
moving ecliptic plane as “general precession in longitude”. Consequently, the final line
has been labeled general motion and by extension the obliquity rate might be called
general obliquity rate.



Both very long baseline interferometry  (VI.B1) and lunar laser ranging, (L1,R) arc capable
of measuring the motion of the equator with respect to space rather than the moving
ecliptic. Thus both measure the luni-sdar  precession rate, not the genera] precession rate
(the lAU primary constant), and have the potential to measure the --0.244 mas/yr
obliquity rate with respect to space. There is weak evidence for the latter in the VI.BI
results (I Ierring et al. 1991, Steppe el al. 1993). Better precession and obliquity rate
measurements can be anticipated as the VL131 and I.I.R data spans lengthen and
separation of rates and 18.6 yr nutations  bccomcs  stronger.

The nutation  theory of Kinoshita  & Souchay  (1990) is a significant improvement on
previous theories and it is important to understand the corresponding values of (C-A) /C,
kM, and ks. Unfortunately, three different values of (C-A)/C  and two of kM have been
published and it is important resolve the discrepancy. From the 1976 IAU constants and
Kinoshita  and Souchay’s numerical values and equations is calculated (C-A)/C  =
0.00327396771, ks = 3475.41426 “/cy,  kM = 7547.19969 “/cy (or 7567.76970 “/cy with
the l/F23 factor), The set of their values which have internal consistency is (C-A)/C  =
0.003273967 (Souchay  & Kinoshita  1991), ks = 3475.4135 “/cy, and kM = 7547.1981
“/cy (7567,7681 “/cy with factor), The unexplained relative difference is 2.2x 10-7, but is
small enough (o only influence the nutations  at the few microarcsecond.level.  In
Kinoshita  and Souchay  the (Earth+-Moon)/Sun  mass ratio is incorrectly labeled Earth/Sun
ratio, but this discrepancy is too small to explain the difference. To adjust their theory to
the (C–A)/C  and precession rate of this paper with all of the corrections, multiply their
nutation  series by the factor 0.99993782.

It is instructive to consider several contributions to the above factor and the proportionate
(C-A) /C, The largest is the correction to the IAU precession rate causing a relative
change of –6.48x 10–5. Updating the mass ratios and obliquity causes -8x 1(F7, The
change in the ecliptic motion causes 9x 1 ()-7. Theoretical differences due mainly to the
planetary tilt induced precession (absent in Kinoshita  and Souchay)  and a somewhat
different geodesic precession account for 2.2x10 -6.

The ratio of J2 = (C-A)/MR2,  where R is the Earth’s equatorial radius, and (C--A)/C gives
C/MR2 the normalized polar moment of inertia, Combining J2 from the GF;M-T2
solution of Marsh et al. (1990), including a suitable addition for the model’s permanent
tide, with the precession derived (C-A)/C  from above yields a rigid body C/MR2  =
0.3307007. With the mean moment I = (C+2A)/3,  then I/MR2 = 0.3299789,

6, The Phase of the Tilt Terms

There are two reasons to consider the seemingly prosaic subject of the phase of the tilt
terms in section 3. 1) It has been stated (Kinoshita  1975, 1977) that these terms do not
give rise to an obliquity rate and the resolution of the difference between that claim and
this paper (and Woolard  1953) hinges on the origin of the phase. 2) Time variations of
the phase will give rise to higher derivatives of the precession and obliquity.

The J2-induced  tilt terms in section 3 have z.cro phase so long as L and Q are referred to
the moving equinox. They do not give rise to an obliquity rate and do not need to be
considered further in this section. The planetary-induced tilt terms in the lunar orbit arise
in two ways. The direct terms arise from the forces of the planets on the lunar orbit. The
indirect terms arise from the force of the Sun on the lunar orbit, coupled with the motion
of the ecliptic plane due to the forces of the planets changing the heliocentric orbit. The



tilt from the direct effect is an order-of-magnitude smaller than the indirect effect. “1’hc
two components have been combined in section 3. The indirect contribution will
dominate the following discussion.

We wish to express the secular motion of the lunar orbit plane acted upon by the Sun,
The coordinates of the pole of the variable lunar orbit are (Pv, –Qv, cos iv) where
I’v = sin iv sin Qv and Qv = sin iv cos f2v. ~’hc analogous variables for the ecliptic pole
are P’ and Q’. [Jsing an inertial frame aligned with the ecliptic and equinox at the initial
time, e. g. at J2000 P’ = Q’ = O, a good approximation for the differential equations for the.
secular motion is (see chapters 12 and 16 of Brouwer & Clemcnce  1961)

dPv/dt  = f’i(Qv-Q’)
dQv/dt  = -d ( Pv --P’) (24)

In the first approximation A is a quantity which is proportional to the mass ratio
Sun/( Earth+ Moon), the lunar mean motion, and the cube of,the ratio of the lunar to
heliocentric semirnajor  axes (ala’)~.  When the ratio of ecliptic motion to d is small, it is
10–5 for the Moon, a good approximation for the solution of the differential equations is

I’v = P+ P’-d’/h

Qv= Q+ Q’+$’Ifi (25)

where P = sin i sin Q and Q =: sin i cos () represent a uniformly processing lunar orbit
plane with rate fi (retrograde 18.6 yr period) and fixed inclination i, Pv -P’ and Qv – Q’
are good approximations for the motion of the lunar  orbit pole with respect to the moving
ecliptic pole. In the above solution the orbit is ~recessing along a plane tilted slightly
with respect to the moving ecliptic. At J2000 Q’/ k 1.386” and P’ / A = -0.124”, so
the indirect term causes a 1.39” tilt with a phase governed by the node of rotation of the
ecliptic plane (11 = 174.87° at J2000).  In 13q. (11) the phase of the indirect contribution is
270°- 11= 9S. 13“ at J2000 and the arguments depend on L - r] and Q - IT.
Conventionally L and L? are measured from the moving (mean of date) equinox along the
moving ecliptic so for compatibility H must be measured from the moving equinox, along
the moving ecliptic, to the node of rotation of the ecliptic on the moving ecliptic (in the
notation of the IAU precession paper this is l“l(T,O)). The smaller direct contribution has
its own phase which depends on the planetary nodes, so the phase of the combined direct
and indirect terms is slightly larger.

Woolard  (1953) earlier computed the obliquity rate contribution from the planetary-
induced tilt in the lunar orbit, When explaining it (pgs. 127-128) he broke the A~
contribution of Eq. (11 ) into sine and cosine components of F + Q = I., displaying only
the cosine component, presumably because he knew that the sine does not give rise to a
secular rate. If the argument was measured with respect to the moving equinox, as Q and
L conventionally are in lunar theory, that is if there was no ~, then there would be no
obliquity rate. For this reason Kinoshita  (1975, 1977) argued against Woolard’s obliquity
rate, but the discussion in the appendix of the latter paper seems to be unaware that there
was a phase, undisplayed in Woolard, arising from an external source. It is concluded
here that the obliquity rate from the indirect tilt is real. In addition, the phase of the direct
tilt and the direct action of the planets on the Ear[h’s bulge both depend on the planetary
nodes so those obliquity rates are also valid.



~’here is an anomaly that I do not understand, The comparison by Souchay  & Kinoshita
( 1991) of their theory with a numerical integration showed as discrepancies neither the
obliquity rate term nor the out-of-phase 18.6-yr nutation  terms which arise from the same
source,

When measured from the moving equinox 11 increases and the phase decreases by 0,91 S
O/century (this rate is wrong in Brown’s lunar theory) and the precession and obliquity
rates arising from the indirect tilt will not be constant. The time dependence of the P’ and
Q’ derivatives in Eq. (25) above can be inserted in Eqs. (12) and ( 13) to compute the
precession and obliquity rates as a power series in time. For use in section 8 it is
convenient to express these rates in a coordinate system moving with the ecliptic and
equinox. In the two-time (T, t) power series of l..ieske et al. (1977) or Simon e[ al, (1993)
differentiate P’ and Q’ with respect to t, set t = O, and use T as the time variable. ~’he
series for the indirect contribution then becomes –0.00392 + 0.000703 T for precession
rate (units “ and centuries=cy)  and -0.0233 + 3x10-6 T2 for obliquity rate. The
computation of the nonlinear contributions is similar for the clirect planetary torques on
the Earth and the direct planetary tilt on the lunar orbit. In Eqs. (22) the dependence of
the direct torque effects on the planetary Ps and Qs is explicit and power series for the Ps
and Qs (Laskar 1986, Simon el al, 1993) can be used. Venus dominates the acceleration
and the result is –17x 10–6 “/cy2 for precession and 2x 10_6 “/cy2 for obliquity. I’he
acceleration due to the direct tilt terms is more difficult, but is estimated to be about 40%
larger than for the direct torque effect. Because the polynomials for the planets used a
fixed equinox, to these figures must be added the larger accelerations which result from
transforming from a fixed to a moving ec]uinox:  411x10-6 “/cy2 for precession and
-48x 1 @6 “/cy2 for obliquity, The total of the preceding direct and indirect tilt terms and
the direct torques on Earth are listed under “planetary tilt and direct torque” in Table 4.
Note that part (0,03269 “/cy) of the direct torque effect for precession in Eq. (22) does not
depend on planetary Ps and Qs, contributes no accelerations, and is included with the
entry for Iuni-solar  precession in the table,

I’he coefficients of the planetary-tilt-induced nutations  (Table 3) will also have secular
changes. Assuming that the secular changes in the Al. coefficients scale in proportion to
those of the latitude coefficient, then the in-phase contributions are
(-0.0301 +0.0050T)  sin Q to the longitude nutation  and (0.0029-O.0005T)  cos Q to the
latitude nutation  (units mas and cy). The relative changes of the out-of-phase coefficients
is about 10_-~ /cy and is ignorable,

7. Tidal and Nonlinear Effects

?’his section will consider effects which influence the accumulated precession
accelerations (first derivative of precession rate), higher derivatives, and another
contribution to obliquity rate. There are effects due to the change in the eccentricity of
the orbit of the Earth-Moon system about the Sun which have been considered in
previous theories, plus tidal effects in the lunar orbit and Earth rotation, and possible
changes in (C--A)/C.  Many of the results of this section can be derived from Eq. (7) and
its lunar counterpart. Moving toward polynomial expressions for the precession
quantities as in I.ieske et al. (1977), the units of that paper are adopted now (arcseconds
and centuries = cy). The results of this section arc summarized  in Table 4. That table
also gives the & dependence since the change of obliquity contributes additional
accelerations and higher derivatives which will be utilized in the next section.



As seen from Eq. (7), the eccentricity of the heliocentric orbit enters into the solar-
induced precession of the equator and changes in the eccentricity will affect the
derivatives of the precession rate. The evaluation of the eccentricity-induced acceleration
(first derivative of the precession rate) in the accumulated precession in the IAIJ theory
dates to de Sitter & 13rouwer  (1938). It is reevaluated here at J2000. lJsing  the
eccentricity polynomials in I.askar (1986) or Sitnon et ~1. (1993), de/dt  = –42,0x10–6  /cy
(cy=ce.ntury).  This causes the solar-induced precession rate to have a first derivative of
- 3362x 10–6 “/cy2. The eccentricity of the heliocentric orbit also enters into the geodesic
precession Eq. (23). The derivative of that rate (in retrograde sense) is 2.7x10-6 “/cy2.
I’he lunar orbit includes perturbations by the Sun and some of these depend on the
heliocentric eccentricity. These are small influences on the lunar-induced precession
which enter as the squares of per,iodic  terms in the lunar latitude and distance. The
fractional influence on the precession rate by the radial terms is 1,97x 1 @6 and by the
latitude terms is --5x 10-8 yielding -33,3x 10-6 “/c.y2 or 1.O% of the solar-induced part.
The luni-solar  acceleration is –3395x 10---6 “/cy2 exclusive of the contribution of the
geodesic precession. There is also a small contribution due to the second derivative of
e2. The t and t2 terms in the precession rate (without geodesic precession) due to
heliocentric eccentricity changes are --3395x l@6 “/cy2 t - 6x1(F6 “/cy3 t2, To convert
the t coefficient to the PI parameter of the IAU theory divide by cos t% to get -0.00370
“/cy2 versus -0.00369 “/cy2 used for the IALJ theory . The agreement is excellent, aided
by the small t2 terln.

Tides are raised on the Earth by the Moon and Sun and their energy dissipation causes the
Moon to recede and the Earth’s rotation to slow. Lunar laser analyses indicate a secular
acceleration of –26.0 “/cy2 and a tidal (semi major axis) recession of 3.84 cm/yr
(Williams et al. 1993) so daldt / a = 1.00x 10–8 /cy. The l/a3 dependence of precession
in Eiq, (7) implies the precession changes by –) 03x 1 @6 “/cy2. The tidal changes in the
lunar orbit eccentricity e and inclination i are small (Chapront-Touze  & Chapront  1983,
1988) and lead to only 0.9x10-6 “/cy2 and 0.2x 10–6 “/cy2, respectively, in the
precession. Eq. (7) depends on the obliquity c, the angular momentum C@z,  and the
moment difference (C-A) which exhibit secular changes due to tidal effects. An angular
momentum balance between the Earth’s spin and the lunar orbit for long time scales gives
an estimate for these secular changes. Writing the angular momentum components
perpendicular and parallel to the ecliptic plane

Hz= C@, cos & + Mm[G(M+m)  a (1-02)] l/2 cos i / (Mi-m)

Hy = C% sin e (26)

where m and M are the masses of the Moon and Earth and G the gravitational constant.
Differentiating both equations for secular changes, conserving angular momentum, and
combining gives

dtidt  = [nti(M+m)]  (n/@ (MR2/C)  (a/R)2 sin c ( l-e2) 1/2 cos i [da/dt  / 2a -
e de/dt / (1-e2)  – tan i di/dt]

d(C@/dt / C@, = -cot c d~dt (27)

where n is the lunar mean motion and R the Earth’s radius, 13valuating  with the tidal
changes in the lunar orbit (dominated by da/dt) gives dddt = 19.6x 1@ “/cy and



d(C(~)/dt  /C@, = –2.20x10--8  /cy. The latter causes 110x 10--6 “/cy2  in (he precession.
Both C-A and the deviation of C from the mean moment depend on the square of the
Earth’s rotation rate. Thus the vaiue of d(o~jdt  / @z, = –2, 19x 10–8 /cy, 0.44% less than
d(Cco~,)/dt  / Cmz. The change in C-A causes a precession change of-220x10-6 “/cy2,
This tidal despinning  of the Earth by (he Moon causes changes in both lunar- and solar-
induced precession. The solar tides also act to despin the Earlh, The solar torque is much
lCSS well known than the lunar. It is a common approximation to assume that the ratio of
solar to lunar torques is proportional to the square of the ratio of tide heights (0,46),
though there is some evidence for a smaller ratio (Broschc  & Wunsch  1990). IIere the
factor 1.21 is used to amend the lunar calculations for the solar contribution: the tidal
obli uity rate is 24x104  “/cy and the tidal precession change is (–102 - 1.21 xl IO)x 10-6

1“Icy = -235x 10-6 “/cy2. A related, but not identical, calculation of the obliquity rate by
Kaula (1964), when adjusted for recent secular acceleration measurements and the solar
contribution, gives an obliquity rate of 17x10-d “/cy.

There are a host of nontidal  processes which change the spin rate of the Earth by
exchanging angular momentum between the liquid core, solid mantle plus crust, oceans,
and atmosphere, but these leave C@, unaffected. However, some of these processes do
affect the precession through changes in C--A. The Earth’s gravitational harmonic J2 is
proportional to C–A and exhibits a small secular decrease which has been detected from
the analyses of ranges to the Lageos and Starlettc  satellites (Yoder  er al. 1983, Rubincam
1984, Chcng  el al. 1989, Watkins & Eanes 1993, Nerem et al. 1993). Consequently the
precession rate should also exhibit a decrease. I’he J2 rates from these studies lie in the
range of (–2,5 to –3 .6)x 1 (Y9 /cy; they induce a sizable precession rate change in the
range of (–1 1.6 to -1 6.8)x1&3 “/cy2, This is about 0,7 % of the -2 “/cy2 classical
acceleration induced by ecliptic motion (next section) and two orders-of-magnitude larger
than tidally induced accelerations. Though seeming to vary on thousand year time scales,
the nontidal  acceleration of the Eiarth’s spin (Stephenson & Morrison 1984, 1985) appears
to be in accord with the reported J2 rates. While the J2 rate is clearly visible in satellite
data from the last one and one-half decades, there appear to be rate irregularities and
questions about the separation of 18.6-yr tidal signatures which limit knowledge of the
long-time average (Watkins & Eanes  1993). Watkins and lianes found that the J2
variations were fit better with 18.6-yr terms than with a linear J2 change. There seem to
be two choices: the reported J2 rate is not linear, perhaps due to 18.6-yr tides which
deviate from the expected, and the explanation for the nontidal  acceleration of spin must
be abandoned or Watkins and Eanes’ results indicate decade-scale signatures in addition
to the linear change with the better 18.6-yr fits explained as due to the data span being
shorter than 18.6 yr plus the advantage of an extra parameter in the fit. For Table 4 the J2
rate has been accepted as valid; adopting a value of-3x lti9 /cy yields -0.014 “/cy2 in
precession. This choice will give a precession acceleration valid since 1976, but the
future extrapolation is uncertain. The J2 rate uncertainty is the largest recognized
uncertainty in the acceleration of precession. The precession is only sensitive to long-
time changes in J2 and the appropriate contribution to the precession will depend upon
further monitoring of J2 changes with artificial satellites.

8. Polynomials

The IAU precession paper (Lieske et ai. 1977) gives polynomials in time for orienting the
Earth based on the IAU-adopted general precession rate, obliquity, and masses. Two
equivalent matrix formulations have also been published (Lieske  1979, Fabris 1980).



improved ecliptic motion led to updates by Bretagnon  & Chapront  (1981), I.askar ( 1986),
and Simon e? al. (1993). The latter paper includes improved precession rate, obliquity,
and masses as well. In this paper thmietical  contributions to precession and obliquity
rates and higher derivatives have been identified and computed, In this section the
theoretical improvements plus updated values for precession rate, obliquity, masses, and
ecliptic motion will be used to generate revised polynomial expressions.

In this section the notation of the IAU paper is used except that the (iIda has been
dropped, The subscript A denotes the accumulated quantity. Thus YA and pA are the
accumulated luni-solar and general precession, respectively. The expressions will be
derived for a single time argument for use with the J2000  epoch. The fixed ecliptic and
equator planes of J2000  and the moving ecliptic and equator of date constitute the basic
geometry. See the I AU paper and Fig. 1 for the definition of the variables,

The basic differential equations were given in the IAU paper but they require additional
terms due to the obliquity rate contributions with respect to inertial space, The obliquity
and precession rates and derivatives of Table 4 use a coordinate frame which is moving
with the equinox. The total contribution of the obliquity rate (with respect to space, not
the moving ecliptic) from the table is denoted R& and the total contribution to the
precession rate multiplied by sin &A is denoted R~ These two components of the
rotation vector are in the plane of the moving equator, Two of the differential equations
are just the projections of these two rates through the angle ~ (“planetary precession”)
between the moving equinox and the intersection of the fixed ecliptic and moving
equator.

Sin (i)A d~A/dt = C O S  ~ ~yj  - Sin ~A R& (28)

The differential equation for the obliquity rate with respect to the moving ecliptic
involves both the motion of the ecliptic and I@

d&A/dt  = cos pA dQ’/dt – sin pA dP’/dt +- ( 1-<os ~A) cos(~+pA)  d?tA/dt  + R& ( 2 9 )

where P’ = sin ~A sin HA and Q’ = sin ~A cos 1~ describe the ecliptic pole with ~ and
~A being the node and inclination, respectively, of the moving ecliptic on the fixed
ecliptic.

In addition to P’ and Q’, which are input functions for the ecliptic motion, the right-hand
sides of the differential equations are functions of ~ and pA, Two geometrical equations
are needed to link these latter two variables with the others.

sin ~ = sin ~A sin(I~+pA) / sin @

The three differential equations and the two geometrical equations must be solved
sillNdtaneOLIsly  for (f)A, VA, &A, ~, and pA.

The simultaneous solution was performed with a numerical technique. The variables are
represented with polynomials of time. The five equations are evaluated at equal time
intervals, the polynomial coefficients are fit, and the procedure is iterated to convergence.



Input quantities are the J2000  obliquity (Eo) and general precession rate plus the
polynomials for P’ and Q’. The constant PO in ~’able  4 is determined from the initial
obliquity and precession rate and (he other precession rates in the table. At J2000 the.
rates of general and luni-solar  precession are linked through the rate of the planetary
precession M projected on the ecliptic plane. The iterative solution for the polynomials
was done in extended precision on a microcomputer.

parameters such as the commonly  used <A, GA, and ~A are derived geometrically from
(11c above set of variables. Numerical polynomial fits were also used, Two points are
noted for generating the polynomials for (A and ?..4. The polynomial for ~ is carried to
one higher degree than those for LA and ~A. It is necessary to include a constant in CA and
7A when the zero coefficient oft in WA is finite. The constant is d@dt / sin @ d~A/dt
evaluated at J2000 and has opposite sig”ns  for CA and ~A.

The program was able to successfully reproduce the polynomials in the IALJ paper with a
deviation of no more than 1 in the Jast digit except for I~A. As also experienced by Fabri
(1980), in the IAU paper the number of digits in I~A exceeds those in P’ and Q’ and
apparently  additional digits in P’ and Q’ were used there.

Greenwich Mean Sidereal Time (GMST) is referenced to a moving equinox.
Consequently, the IAU-adopted  polynomial expression for GMST given by Aoki et al.
(1982) is specific to the lAU precession theory, As pointed out by Williams &
Melbourne (1982) and Zhu & Mueller ( 1983), changing the precession expressions
without changing the CJMS1 expression will result in a change in UT1 determination.
Consequently, an additional equation has been evaluated numerically, The fundamental
parameter is the rotation rate of a rigid Ilallh with respect to inertial space about it’s
symmetry axis

d( GMST + ~ ) / dt - COS (l)A dl#A/dt (31)

with due consideration for the units. The nonlinear parts of the GMST expression at z,ero
hour UT, GMST = GMSTO + UT1, come from

(32)

, dividing arcseconds  by 15 to convert to seconds. The coefficients of the constant and
linear terms were set by imposing the condition that at J2000 there would not be a
discontinuity of UT1 (the constant coefficient matches Aoki et u),), its rate, or the rotation
rate of the Earth in space. In Aoki et al. the constant and linear coefficients were picked
for continuity of UT 1 determined from optical astrometric measurements of catalog stars
rather than continuity with respect to an inertial frame. Inertially  referenced techniques
now dominate the determination of UT1 so there is no counterpart to the catalog equinox
drift, It is conventional to derive the small nonlinear terms of GMSTO using a linear time
scale for the independent time, but to evaluate the entire GMSTO expression using a UT1
time scale.

Since the IAU theory for prccessicm appearecl,  there have been improvements in the
computation of the motion of the ecliptic due to theoretical advances and improved
planetary masses, better measured values for precession rate and obliquity, and the
addition of the theoretical adjustments of this paper. To illustrate the resulting changes,
revised expressions are presented here, ~’he values here match those used to generate
Table 3 (section 5). The ecliptic motion is taken from Simon et al. (1993) including
planetary mass corrections, The theoretical adjustments of Table 4 have been used. The



resulting expressions are given in Table 5. The units are arcscconcts and Julian centuries
measured from J2000 [t = ( JD - 2451545.0 ) / 36525], except for GMST which uses
seconds and centuries of IJT1 measured from JD 2451 S45.0 UT1 = 12 hr. UT] cm
January 1, 2000. While these expressions can serve those who need the highest accuracy
now, it should be anticipated that there will be future improvements: some theoretical,
certainly in the measurement{ of the precession constant and obliquity, and hopefully  in
the predictive knowledge of the J2 rate.

The polynomial expressions in Table 5 can be used for times extending out to a few
millennia, but for longer times they are just representations of an average precession r:ite
and obliquity plus long-periodic, or at least quasi-periodic, terms with periods exceeding
10,000 yr (13erger 1976, I.askar er al. 1993). For millions of years the small tidal
acceleration is inexorable and modifies the, precession and obliquity behavior for ancient
times (Berger e~ al, 1992). Nontidal  J2 change must be more transient since most of the
Earth’s oblateness is controlled by its spin; large deviations of J2 from equilibrium would
cause large stresses.

9. Rotations

Considered in this section are the rotations suitable for the various sets of precession
parameters in Table 5. When combining the rotations for precession and nutations,  the
number of rotations can be minimized. Finally, an expedient procedure is given which is
suitable for introducing the most important (linear) corrections to precession and
obliquity without undertaking the more extensive and complete modifications,

Consider the rotations which can be used to orient the Earth for precession and nutation.
The standard procedure is to precess  from the mean equator and equinox of .12.000 to the
mean equator and equinox of date UShIg the ang]es CA, 6A, and ~A and then to nutate  to
the true equator and equinox of date by rotating into the mean ecliptic of date, applying
nutation  in longitude to reach the true equinox of date, and then to rotate to the true
equatorial plane including nutation  in obliquity. The sequence of six rotations (Ri is the
rotation matrix around axis i) is

R 1 (-&A-A@ Rs(-AY)  R I (8A) R3(--90°-zA)  R1 (~) R3(90”-<A) (33)

An alternative is to precess  by moving along the fixed ecliptic to the intersection with the
mean equator of date, then rotate along that equator to the mean equinox of date, and then
to nutate  as before. The seven rotations are

Rl(-&A-AE) Rs(-A~) Rl(&A) R3(~ A) R1(--co A) Rs(-~ A) Rl(@) (34)

A second alternative is to precess  by moving along the fixed ecliptic to the intersection
with the mean ecliptic of date, rotate back along the mean ecliptic, and then nutate.

R 1 (-cA-A@  RS(-l~-pA-A~) R 1 (mA) R3(I~)  R 1 (~) (35)

The third procedure requires only five rotations. If one is to nutate as well as precess,  it is
possible to bypass the mean equator of date and combine the precession and nutation
along the moving ecliptic. Five rotations is not the minimum for combining precession
and nutations,  With four rotations one can move along the fixed equator to the
intersection with the moving equator (angle  ~A), rotate into the mOVitIg  eqUatOr (~’A),



combine the rotation along the ecliptic of date (TM to the mean equinox of date) ancl
nutation  in longitude, and rotate to the true equator

RI (-SA-AE) R3(-~-AY) Ill (8’A) R~(~A)

The angles  <A, &’A, and M have not been given with conventional precession expressions
in the past. They are illustrated in F:ig. 1 and the expressions are given in Table S.

Note that for the changes in precession and obliquity polynomials not due to ecliptic
motion, only the last two rotations in the last two cases would be changed; for the first
two cases the precession and obliquity changes are distributed over multiple rotations,
The last two cases make it clear that a change to the precession rate and the -0.0244 “/cy
correction to the obliquity rate, and even the larger number of theoretical contributions in
Table 4, could be added into the corresponding nutation  parameters as an alternative way
to introduce them (a similar conclusion was reached by Folkner et al. 1993 and VLBI fits
to observations have often included linear terms in their “nutation”  corrections). This is
an expedient, short-term solution for those who do not wish to reprogram the precession
and GMST expressions. For this expedient approach the equation of equinoxes
associated with A~ will automatically satisfy the concerns of Williams & Melbourne
(1982) and Zhu & Mueller ( 1983) about precession modifications changing UT], so that
GMST does not require revision. This expedient procedure does not work for
geometrical revisions to ecliptic motion (purely p’, Q’, ~& and ~A but also parts of other
parameters) since they appear in multiple rotations and tend to cancel, but it could be
applied to the dynamical consequences of those revisions. However, it is observed that if
an expedient procedure becomes too complicated then it is not expedient, It is best suited
to easily inserting the linear corrections to precession and obliquity.

10. Nutation  Corrections, Scaling, and Comparisons

The 1980 IAU nutation  series (Seidelmann  1982) was a combination of the rigid-body
series of Kinoshita (1977) and the elastic and structured-Earth corrections due to Wahr
(1979, 198 1), Since the 1980 IALJ nutation  working group paper there have been two
revisions of rigid-body nutations  (Zhu & Groten  1989, Kinoshita  & Souchay  1990). The
nutation  theories allowing for the Earth’s elasticity and core are based on the rigid-body
theories and it is well to compare and understand those rigid-body theories .

Zhu and Groten utilized the earlier work of Kinoshita  (1977) extending the series to
smaller terms, and adding both second-order terms and corrections for the Earth’s J3. It
has served as the basis for non-rigid body treatments by Zhu et al. (1990), and the several
ZMOA series of Herring (1990), Mathews e~ al. (1991), and Herring et al. (1991).
Kinoshita  and Souchay also extended the series to smaller terms, and added second-order
terms, J~ effects, and planetary terms involving planetary arguments. In addition they
added small solar terms due to the offset of the Farth from the center of mass of the
Earth-Moon system and revised the expression for the (C-A)/C  scaling of the nutation
series from the precession constant. In Kinoshita  (1977) and Kinoshita  and Souchay  the
J2 tilt effects on the scaling and 18.6-yr  terms are present. The in-phase 18.6-yr  nutation
coefficients and the -0.0056 “/cy precession due to the planetary tilt effect is present in
the former, but not the latter work, Kinoshita  and Souchay  also add -0.014 “/cy second-
order contributions to the precession and make small revisions to the first-order
contributions which are not present in the earlier works. Thus there are small differences
in the scaling of Kinoshita  and Souchay,  Zhu and Groten,  and this paper which are
addressed below. Only Kinoshita  and Souchay  have the smalI center-of-mass offset



corrections, three of which have amplitudes of 0.02 mas in longitude. Comparison of the
J~ contributions in the two papers shows poor agreement; the 3231 day obliquity
coefficients have different signs and differ by 0.12 mas. In addition, the 6164 day
coefficients disagree by a factor of two. See Souchay  (1993) for further comparisons.

The coefficients of Kinoshita  and Souchay’s  rigid-body nutation  theory would have to be
multiplied by 0,99993782 (section 5) to match the precession rate and other changes of
this paper. This would cause the 18.6-yr A~ coefficient to increase by 1,075 mas and the
18.6-yr A& coefficient to change by -0.574 mas. These corrections are in addition to
those  of Table 1 and taken together the in-phase corrections to the 18,6-yr coefficients are
1.045 mas in Ayi (giving -17.28076”) and --(1.57 1 mas in Ac (9.22800”).

‘1’o match the constants of this paper the coefficients of Zhu and Groten’s rigid-body
nutation  series need to be multiplied by 0,9999308 for the lunar terms and 0.9999297 for
the solar terms. For the in-phase 18.6 yr coefficients this gives –1 7.28075” in AyJ and
9.22792” in AC Thus after correction to a common (C-A)/C  and compensation for the
planetary tilt effect, the 18.6-yr terms of Zhu and Groten and Kinoshita  and Souchay
differ by only 0.01 mas in longitude and 0.08 mas in obliquity.

To all nutation  series since Woolard (1953) the out-of-phase planetary tilt contributions
of Table 1 need to be added. To all nutations  series since Woolard, a -0,15 rnas annual
term from the yearly variation of the geodesic precession needs to be added to the
nutation  in longitude (Voinov  1988, Gill et al. 1989, Fukushima 1991). For highest
accuracy, nutation  terms with planetary arguments, such as those of Kinoshita  and
Souchay,  should also be included, While  it causes minor changes in the resulting
nutation  series evaluation, the arguments of the 1980 IAU series and other series can be
improved upon by using the values of Simon et al. (1993). The annual argument (/’)
differs by 5“ at J2000,  but the values of 1’ and L’ depend very much upon which long-
pcriod terms are being carried when these arguments are fit to the time-varying
heliocentric orbit. It should be compatible with the formulation used to generate the
nutations  with planetary arguments.

11, Summary

Improvements in the accuracy of the observed motion of the Earth’s equator plane and the
wish to use these observations to infer the Earth’s properties make improvements in the
theories of precession, obliquity rate, and nutations  desirable. The rate terms computed
in this paper come from lunar orbit perturbations due to the planets and the Earth’s J2 plus
direct planetary torques on the Earth.

The corrections to the obliquity rate are due to direct planetary torques on the Earth (see
section 4 and Table 2), torques due to planetary perturbations on the lunar orbit (section
3), and tidal influences (section 7, Table 4), Together these corrections are -0.244
milliarcseconds/yr (mas/yr),  This correction is a motion in space; the conventional
-0.468 “/yr obliquity rate is due solely to ecliptic motion, not to changes in the Earth’s
orientation, The IAU-adopted theory of precession and obliquity changes requires
correction for this contribution to the obliquity rate, l’he largest contribution to the
obliquity rate in space was earlier computed by Woolard (1953), but its reality was
questioned by Kinoshita  ( 1977). Section 6 discusses the reason for this discordant
interpretation and concludes that the rate is real. The obliquity motion in space should be
observable by the very long baseline interferometry and lunar laser ranging techniques.



In addition to the obliquity rate amendments, there are small contributions to (he
precession rate due to direct planetary torques and lunar orbit effects (sections 3 and 4,
~’able 2). The sum of the various contributions to obliquity and precession rates is given
in Table 3 (section 5). Based on recent measurements a general precession rate of
50,2877 “/yr at J2000 was adopted. For a rigid Earth this corresponds to the moment-of-
inertia combination (C–A)/C = 0.0032737634. Combined with a satellite-determined J2
this gives a normalized polar moment of inertia C/MR2  = 0.3307007 and a normalized
mean moment I/MR2 = 0.3299789 with R the equatorial radius.

The contributions to obliquity and precession rates are not constant with time and the
higher derivatives from these and other sources are computed in section 7, Table 4
summarizes both linear and nonlinear (in time) contributions. The theory for orienting
the Earth (precession, obliquity changes, and Greenwich Mean Sidereal Time) is
considered in section 8 and revised polynomial expressions are presented (Table 5). In
addition to the theoretical corrections of this paper, these expressions use improved
values of the obliquity, precession rate, masses, and ecliptic motion.

Matrix rotations which combine precession and nutation  are considered in section 9. The
conventional rotation scheme is not optimized for the number of rotations, A sequence of
four rotations is given which incorporates both precession and nutation.

The torques, due to lunar orbit perturbations from the planets, also give rise to nutation
contributions (section 3 and Table 1), The largest contributions are to the 18.6-yr
nutations:  -0.030  sin Q + 0.137 cos Q to AV (in mas) and -0.028 sin ~ + 0.003 cos !2 to
A&. The small out-of-phase corrections arise because, other than the Earth, the planetary
nodes on the ecliptic are not aligned with the dynamical equinox. Out-of-phase nutations
are conventionally considered to only arise from energy dissipation in the Earth and
oceans, but these are exceptions.

The torques which cause precession and nutation  depend on (C–A)/C so that an accurate
determination of the precession rate sets the scale of the nutations,  This scaling of the
two most recent rigid-body theories is discussed in section 10. Also discussed are the
additions appropriate to each of these nutation  theories.

Since the IAU expressions for precession and nutations  were adopted, both theoretical
improvements and refined measurements have become  available. The theoretical
contributions of this paper may be added to revised computations of ecliptic motion,
rigid-body nutations,  dissipative effects in the Earth’s interior and oceans, and relativistic
effects, Improved measurements of the precession constant and individual nutation  terms
are available. The latter have permitted refined computations of the non-rigid-body
contributions to nutations.  Understanding of the orientation of the Earth’s equator and the
fundamental influences on the orientation is advancing.
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FIGURE CAPTION

FIG. 1. Relation between the fixed equator (mean equator) and fixed ecliptic of J2000
and the moving (mean of date) equator and ecliptic. The arc from the moving equinox to
the node of the moving ecliptc  on the fixed ecliptic is AA = ~ + pA = q i-W.



TABLE 1. Nutation  terms due to J2 and planetary tilt effects
of lunar orbit. Lunar mean longitude is 1, = Q + F.

-.. —---  .—. —.. .
Al# A&

argument sin Cos sin Cos
mas mas mas mas

— ———
J 2  T i l t

a - 1 , 4 7 8 2 010000’ 0,0000 0(155?
-2*Q 0,0049 0,0000 0,0000 -0,0026
2*L 0,0151 0!0000 0,0000 -0,0081

PlOne,tary
Q -0,0301 0,1366 -0,0277 0,0029

2*~ -0,0005 0,0060 0,0032 0,0003
2*L 0,0003 -0,0028 -0,0015 -0,0002

TABI.E 2. Precession and obliquity rates frcjm
direct planetary torques on the Earth’s bulge,

. . —..—. — . ..-—— —....
Planet y.t rate c rcate

mas/yr mas/yr
——... —

Mercury 0,003651 -0,000090
Uenus 0, 18?273 -0,017372
tlars 0,005393 0,000255
Jupiter 0,116665 0,002782
Saturn 0,005177 0,000217
Uranus 0,000100 0,000001
Neptune 0,000029 0,000001
Total 0,318287 -0,014207



TABLE 3. Contributions to precession and obliquity rates,
(C-A)/C = 0.0032737634 and obliquity 23°26’21,409” at J2000.

120ntr-i_but  i On prec, ‘rate  - ‘“c rate
arcseclyr arcsec/yr

Sun first order 15,9488?0
Moon first order 34,457698
Second ctrder -0,000468
Jq 0,000026
Tilt effects -0,002686 -0,000254
Direct pl~netarg 0,000318 -0,000014
Tidal 0,000024
Geodesic precession  -0,019194
Total space motion 50,384565 -0,000244 .

Ecliptic motion -0,096865 -0,468096
General motion 50,287700 -0,468340

TABLE4.  Time and obliquity dependence ofprecession  andobliquityrates(’’/century)
which are needed to calculate the evolution ofprecession  and obliquity with time.

Source Ratein’’/century c Dependence
— —.——

Precession
Luni-so]ar,  direct planetary torque POcos~-  -0,003395t  -6xlO-6tz COS&
Geodesic precession --1.919362 +2.7x10__6t 1
Second order(M3) -0.03310 6cosz&-1
Second order --0.01368 3COS2E-1
J4 precession +0.00260 cosc (4–7sin2E)
J2 tilt -0.2630 cos2E /sin&
Planetary tilt and directtorque -0.00643+0.001074 t cos2& /sin&
Tides on lunar orbit -0.000102 t COS2 E
Tides on spin and moments -0.000133 t cos~ E
J2 rate -0.0140 t Cos &

Obliquity
Planetary tilt and direct torque -0.0268-0.000044 t+3x10_6tz Cos e
Tides +0.0024 sine cose



—

TABLE 5. Polynomial expressions for orientation of the Earth’s equator (arcsec), Time
t in Julian centuries from J2,000 (JD 245 1545.0). Greenwich mean sidereal time
(seconds) at O hours lJTl. Time in IJTI centuries from 12 hr. IJT1, JD 2451545.

Flngle constant t t2 t3 t’1

.— .
P’ CI, IICIOIIOO  — 4 , 1 9 9 6 1 0 0,193971 -0,000223 -0,000001
Q’ 0,000000 --46, ?09560 0,051043 0,000522 -0,000001
WI 0,000000 46,997570 -0,033506 -0,000124 0(000000
rl~ 629543,967373 -867,919986 0, 153382 0,000026 -0,000004
Pfi 0.000000 5C128 ,770000 1, lo5’to7 0,000076 -0,000024
WI 0!000000 5038,456501 -1,078977 -0,0011’11 0,000133
Wi .84381 ,409000 -0,024400 0,051268 -0,007727 0,000000
w 0!000000 10,557700 -2,381366 -0,001208 0,000170
E~ 84381,409000 -’16,833960 -0,000174 0,002000 -0,000001
CR 2,511180 2306,071060 0,299027 0,018017 -0,000005 “
Zfl -2,511180 2306,065079 1,092516 0,018265 -0,000029
e~ 0!000000 2004, 182023 -0,429466 -0,041822 -0,000007
kR 0,000000 10,557700 0,493164 -0,000309 -0,000003
C.’R 84381,409000 -46,809560 0,051142 0,000531 0,000000
WI O.OOOOOO 5038,’156501 1,558353 -0,000186 -0,000027
GtlSTO 24110,54841 8640184,?928613 0,0927695 -0,0000003 -0,0000020



FIGURE CAPTION

FIG. 1. Relation between the fixed equator (mean equator) and fixed ecliptic of J2000
and the moving (mean of date) equator and ecliptic, The arc from the moving equinox to
the node of the moving ecliptc on the fixed ecliptic is AA = ~ + pA = ~ + W.


